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Abstract. Several important generalizations of Fermi-Dirac distribution are compared to numerical and
experimental results for correlated electron systems. It is found that the quantum distributions based on
incomplete information hypothesis can be useful for describing this kind of systems. We show that the
additive incomplete fermion distribution gives very good description of weakly correlated electrons and
that the nonadditive one is suitable to very strong correlated cases.

PACS. 05.20.-y Classical statistical mechanics – 05.30.-d Quantum statistical mechanics –
71.10.-w Theories and models of many-electron systems – 71.27.+a Strongly correlated electron systems;
heavy fermions

1 Introduction

In this work, we attempt to relate generalized statisti-
cal theories to correlated electron or quasiparticle sys-
tems which, since 1980’s, have been subjected to intensive
theoretical and experimental studies due to their impor-
tant roles in optical [1], mechanical [2], electric and mag-
netic [3–8] properties of metal compounds with partially
filled d- or f -electrons. In general, with complex correla-
tions, the conventional Boltzmann-Gibbs statistics (BGS)
for free fermions is no longer valid. Most of the theoreti-
cal study up to now was numerical simulations based on
approximate models including essential physics of the sys-
tems of interest. Although these theoretical works are very
important and fruitful, the need of general understanding
and theoretical formulation of the distribution laws be-
gins to be felt. Due to the complexity of the correlations,
we can conjecture that generalization of Fermi-Dirac (FD)
theory may be useful. In this sense, some efforts have been
made to understand localized electron behavior on the ba-
sis of fractal geometry (see [9] and references there-in), a
generalization of normal space-time.

In what follows, I present a work in this direction
based, not on the fractal or chaotic assumption, but on
generalized statistical theories proposed for complex sys-
tems showing correlated phenomena. The theoretical re-
sults will be compared to numerical and experimental ones
for correlated electrons. It is expected that this attempt
can help to better understand different generalized the-
ories and identify valid theories for this special circum-
stance.

a e-mail: awang@ismans.univ-lemans.fr

2 Some important generalizations of BGS
and correlated electrons

Indeed, in the last decade, BGS theory has experienced
a turbulent period with the rapid development of some
anomalous theories to treat complex systems. These the-
ories are anomalous in the sense that they may perturb
our old conceptions concerning, e.g., information, energy,
quantum states, additivity etc. The main characters of
these theories can be resumed as follows:

1) Consideration of nonadditivity in entropy, energy,
quantum occupation number etc. depending on empirical
parameters, e.g. 0 < q < ∞ in Tsallis nonextensive statis-
tical mechanics (NSM) [10] and in its incomplete statistics
(IS) version [11–15] as well as in quantum group theory
(QGT) [16,17], κ ≥ 0 in κ-statistics (KS) [18].

2) Bosonization of fermions or fermionization of bosons
allowing intermediate occupation number related to em-
pirical parameter, e.g. 0 ≤ α ≤ 1 in fractional exclusion
statistics(FES) [17,19–22] and −1 ≤ η ≤ 1 for the FES in
the frame of KS [18].

3) The empirical parameters take some particular val-
ues when the theories recover BGS (q = 1, α = 0, 1, κ = 0
and η = −1, 0, 1).

The philosophy of these generalizations, explicit or not,
is to introduce empirical parameters to “absorb” the ef-
fects of complex correlations. So interacting systems can
be mathematically treated as noninteracting or conven-
tional ones. For example, the total energy of an interact-
ing “free particle” can be written as p2/2m where p is
the momentum and m the mass of the particle. The ex-
tra interaction energy is in this way “absorbed” in the
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Fig. 1. Fermion distributions of FD, FES, AD, KS and nonex-
tensive IS at 100 K. The fermion density is chosen to give
e0

f = 1 eV for FD distribution at T = 0. We note that all
these distributions show sharp n drop at Fermi energy ef . In
addition, AD and KS distributions are only slightly different
from the FD one even with q very different from unity and
maximal κ far from zero. On the other hand, the nonexten-
sive IS distribution changes drastically with decreasing q. We
notice a wide decrease of n and a strong increase of ef with
decreasing q. As q → 0, the occupation number tends to 1/2
(zero) for all states below (above) ef which increases up to 2
times ef0 , a fact shown by numerical calculations for strong
correlated electrons.

empirical parameter when they are different from the val-
ues corresponding to conventional cases.

About the generalization of FD statistics, Figure 1
shows the different fermion distributions at T=100 K
of the generalized statistical mechanics mentioned above.
We see that the discontinuity in occupation number n at
Fermi energy ef depends almost only on temperature for
all these distributions. The sharp n-drop hardly changes
for whatever value of the empirical parameters. In ad-
dition, we note that the approximate distribution (AD)
n = 1

[1+(q−1)β(e−ef )]1/(q−1)+1
(0 < q ≤ 1 in order that

the inverse temperature β can go to ∞) of NSM ob-
tained with factorization approximation [22,23] by ne-
glecting correlation energy between the particles is only
slightly different from FD one. So its Fermi energy is al-
most identical to that of FD. The situation of KS is sim-
ilar. At low temperature, the κ-distribution of standard
fermion (η = 1) n = 1

[
√

1+κ2β2(e−ef )2+κβ(e−ef )]1/κ+1
[18]

is hardly different from FD for κ values which give fi-
nite internal energy (e.g. 0 ≤ κ < 1/2 for two di-
mensional fermion gas). For FES fermion distribution
(1/n − α)α(1/n − α + 1)1−α = e(e−ef )/kT [19] (or equiv-
alently n = 1

eqβ(e−ef )−1
− (1+α)/α

eqβ(e−ef )(1+α)/α−1
[24]), the n-

discontinuity depends only on temperature just as for FD.
The influence of α smaller than unity (for FD) is to de-
crease ef (α times) and to increase the maximal occupa-

tion number (1/α). As for the nonextensive fermion distri-
bution of IS n = 1

[1+(q−1)β(e−ef )]q/(q−1)+1
[14,15], though

n drop at ef is always very sharp, ef increase considerably
as q decreases from unity. And consequently, there is an
important wide n decrease with decreasing q. It was shown
[15] that, for q → 0, ef can increase up to two times the ef

of FD with n = 1/2 (n = 0) for all energy below (above)
ef . Another common character of NSM and IS distribu-
tions is that, due to the energy cutoff with q < 1, there
are few electrons above ef at low temperature (large β).

Now let us see the distributions of correlated elec-
trons. From some results of experiments and numerical
simulations based on low dimension Kondo lattice models
(KLM) [5–8], we notice two important effects of correla-
tions. First, the wide decrease of n and the sharp n drop
at ef much larger than that without correlation have in-
deed been observed for very strongly correlated electrons
(with the coupling parameter J ≥ 4) [6,8] (see Figs. 3 and
4). So it is possible to describe correlated electron systems
in strong coupling regime by IS fermion distribution with
q very smaller than unity (close to zero) [15]. On the other
hand, another effect of correlation, in the weak coupling
regime, is the flattening of n drop at ef [5–8]. That is that
the correlation, even at low temperature, drives electrons
above ef so that the n discontinuity becomes less and less
sharp as the correlation increases. Curiously, this flatten-
ing of n discontinuity at ef , though confirmed by exper-
imental results [5], is completely absent in the fermion
distributions given by all the statistics, extensive (FES)
or nonextensive (NSM, IS and KS), mentioned above.

Fermi surface plays an essential role in the physical
properties of metals and metal compounds. So it is of
great interest for generalized statistical theories to take
into account the essential physics relevant to Fermi en-
ergy. In what follows, we will show that it is possible to
cover the observed weak correlation effects upon ef within
an additive generalization of BGS based on the IS princi-
ples. The reader can find a complete review of IS theory
in references [11–15].

3 Additive incomplete statistics

The concept of IS is inspired by incomplete probability dis-
tribution (i.e. Trρ = Q �= 1) [25] as well as the theoretical
difficulties one encounters with Trρq �= 1 in NSM [10,13].
The basic assumption of IS is that our knowledge about
physical systems is in general incomplete due to unknown
interactions or their effects which can not be studied ex-
plicitly. In this case, there are always missing informations
about the physical systems. So probability distribution is
in general inexact and incomplete and can not sum to one.
One should write Tr(ρ/Q) = TrF (ρ) = 1 where F is cer-
tain function to be determined. In the case of complete or
approximately complete distribution (such as BGS), F is
identity function. In my previous paper, in order to keep
Tsallis framework of NSM, I proposed F (ρ) = ρq so that

Trρq = 1, (1)
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where q is Tsallis entropy index [11–13]. Since ρ < 1, we
have to set q ∈ [0,∞]. When q = 1, ρ becomes com-
plete, which implies a complete or quasi-complete knowl-
edge about the system of interest. The nonextensive IS
formalism [11,13] on the basis of Tsallis entropy yields
Tsallis q-exponential distributions and the fermion distri-
bution [14,15] discussed above. An successful application
of equation (1) to the study of some power laws on the
basis of Rényi entropy [25] can be found in reference [26].
One can even find a plausible justification of equation (1)
in a work of Tsallis on the probability distribution on some
simple fractal supports like Koch or Cantor sets [27]. In-
deed, the phase space of the systems including complex
interactions is in general chaotic or fractal structure. In
these structures, exact probability distribution is impos-
sible due to the fact that, first, the structures are not
differentiable and integrable, second, as mentioned above,
some state points in the structures are not accessible. So
the treatment of the incomplete distributions, not in the
fractal space of df dimension, but in a differentiable and
integrable d-dimension space, is inevitable. This consider-
ation yields in a natural way the incomplete normalization
equation (1) [15].

Now we suppose that the system of interest has addi-
tive information and physical quantities (e.g. H =

∑
i Hi

where H is the Hamiltonian of the compound system and
Hi that of the ith subsystem). This case may happen
if there are only weak and short range interactions, so
that the Hartley formula ln(1/ρ) for information measure
should apply. The entropy of the system can be defined à
la Shannon as follows [12]:

S = kBTrρ
q ln(1/ρ). (2)

S obviously becomes Gibbs-Shannon entropy (SGS) when
q = 1, which identifies kB to Boltzmann constant. It is
straightforward to see that S verifies all the properties
of SGS . For microcanonical ensemble (ρq = 1

w ), we have
S = kB

q ln w which decreases with increasing q value. In
general, ∆S = S − SGS < 0 (or > 0) if q > 1 (or q < 0).

For canonical ensemble, we postulate

U = TrρqH (3)

where H is the Hamiltonian and U the internal energy of
the system. The maximum entropy of S with equation (1)
and (3) as constraints leads to:

ρ =
1
Z

e−βH (4)

with Z = (Tre−qβH)1/q. The Lagrange parameter β can
be determined by ∂Sq

∂Uq
= kBβ = 1

T where T is the abso-
lute temperature. It is easy to see that all thermodynamic
relations in this theory are identical to those in BGS.

We indicate in passing that this generalization of BGS
is obviously the consequence of the “power-normalization”
equation (1). Other useful normalizations, if any, of in-
complete distributions may lead to different generaliza-
tion of BGS. For example, if we use Hartley formula as
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Fig. 2. T -dependence of Fermi momentum kf of the exten-
sive IS fermion distribution in present work. The density of
fermions is chosen to give kf0 = 0.25π in the first Brillouin
zone. The T -dependence of kf is in general not monotonic, in
contrast with the classical decreasing behavior of ef with in-
creasing temperature. We notice that, at low temperature, kf

shows an increase with increasing T .

information measure and define expectation value for ad-
ditive entropy and energy with F (pi) satisfying ∂ lnF (x)

∂x =
1/x

α−lnx−(− ln Zx)1/γ where γ is an empirical parameter, max-
imum entropy will lead to the famous stretched exponen-
tial distribution [28] pi = 1

Z e−(βEi)
γ

where Ei is positive
energy of the system at state i, α and β the Lagrange
multipliers related respectively to normalization and en-
ergy constraint U =

∑w
i=1 F (pi)Ei. When γ = 1, we can

recover ∂ ln F (x)
∂x = 1

x as in BGS.

4 Additive IS fermion distribution

For grand canonical ensemble, the same machinery as
above leads to

ρ =
1
Z

e−β(H−µN) (5)

with Z = [Tre−qβ(H−µN)]1/q. Supposing U =
∑

j njej and
N =

∑
j nj in accordance with the additivity assumption,

the average occupation number n of one-particle state of
energy e can be straightforwardly calculated [12]:

n =
1

eq(e−ef )/kBT + 1
(6)

which recovers FD distribution for q = 1. The Fermi
energy can be calculated in the standard way. For 2-D
systems, e.g., we have ef = ef0 + kqT ln(1 − e−ef /kqT )
where kq = kB

q . In Figure 2 is plotted the T -dependence
of ef for different q values for 1-D fermion systems. We
see that ef considerably changes with decreasing q. From
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Fig. 3. Comparison of extensive IS fermion distribution (lines)
with the numerical results (symbols) of Eder et al. on the basis
of Kondo lattice t − J model (KLM) for different coupling
constant J [6]. The density of electrons is chosen to give kf0 =
0.25π in the first Brillouin zone. We note that IS distribution
reproduces well the numerical results for about J < 1. When
coupling is stronger, a long tail in the KLM distributions begins
to develop at high energy. At the same time, a new Fermi
surface at k = kf0 + π/2 = 0.75π starts to appear and a sharp
n drop takes place at the new Fermi momentum. At J = 4,
KLM distribution (x-marks) is very different from that of IS
(e.g. q = 0.0011). The solid line fitting better the J = 4 KLM
distribution is given by the IS version of fractional exclusion
distribution (1/n − α)α(1/n − α + 1)1−α = eqβ(e−ef ) [19,20]

or n = 1

e
qβ(e−ef )−1

− (1+α)/α

e
qβ(e−ef )(1+α)/α−1

[24] with 1/α = 0.85

due to the KLM occupation number smaller than 0.5 at low
momentum k.

equation (6), we see that q-dependence of ef at given T
will be similar to the T -dependence. The effect of q on
other physical quantities (specific heat, electrical con-
ductivity, susceptibility, effective mass etc.) is discussed
in [12].

The n distribution around the Fermi momentum kf

can be estimated from equation (6) using e = �
2k2/2m

(k is the momentum). We get:

n =
1
2

[
1 +

q

kBT

�
2k2

f

m
(k − kf )

]
(7)

which is similar to the analog given by a Monte-Carlo cal-
culation based on a tight-binding Kondo lattice (KL) [7].
A comparison with [7] leads to Z = q�kf

2 , where Z is
the quasiparticle weight of photoemission spectrum. Note
that Z is kf -dependent here. Equation (7) tells us that
decreasing q yields a flattening of n drop at ef .

In Figures 3 and 4, we compare the momentum distri-
bution given by equation (6) for T=50 K to some numeri-
cal results of the momentum distribution of 1-D correlated
electrons [6,8]. We see that, for about J < 1 and q > 0.003,
KLM calculations can be well reproduced by equation (6).
But for smaller q or stronger coupling with J > 1, a long
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Fig. 4. Comparison of extensive IS fermion distribution (lines)
with the numerical results (symbols) of Moukouri et al. on the
basis of Kondo lattice t−J model (KLM) for different coupling
constant J [8]. The density of electrons is chosen to give kf0 =
0.35π in the first Brillouin zone. We note that IS distribution
reproduces well the numerical results for about J < 2. When
the coupling is stronger, a long tail in the KLM distributions
begins to develop at high energy. A new Fermi surface with
sharp n drop starts to appear at about k = 0.7π, an energy
cutoff effect absent in the extensive IS fermion distribution.

tail in the KLM distributions begins to develop at high
energy and can not be reproduced by equation (6). At
the same time, a new Fermi surface at kf + π/2 starts
to appear and a sharp n drop (energy cutoff) takes place
at the new Fermi momentum. All these strong correla-
tion effects turn out to be completely absent within the
present IS Fermion distribution. It is clear that this dis-
crepancy marks the limit of this formalism and perhaps
implies that nonextensivity is no more negligible in very
strong-coupling case. It is worth noticing that the strong
correlation effects, absent in additive IS fermion distribu-
tion, are just what we noted in nonextensive IS fermion
distribution [15] plotted in Figure 1. This suggests that a
combination of these two IS generalizations of BGS, rep-
resenting respectively two different aspect of correlation,
may be an interesting approach leading to more generally
valid statistical mechanics suitable for correlated particle
systems.

5 Conclusion

We have compared several important generalizations of
FD distribution to numerical and experimental results for
correlated electron systems. It is found that the gener-
alized fermion distributions based on incomplete informa-
tion can be useful for describing these systems. It is shown
that the extensive IS fermion distribution gives a good de-
scription of correlated electrons in weak coupling regime.
On the other hand, it fails to describe strongly correlated
conduction electrons and localized f -electrons which are
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possible to be described by the nonextensive IS fermion
distribution. The latter, though powerless for the descrip-
tion of weakly correlated electrons, shows similar behavior
as the heavy electrons in strong coupling regime: strong
increase of ef and n-cutoff accompanied by a general de-
crease in n at all energy up to ef . In a current work, we
are trying to combine these two partially valid generaliza-
tions. Further results will be presented in a future paper.
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